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A method of investigating the stability of non-linear systems acted upon by unsteady perturbations is proposed, based on the 
use of Lyapunov's second method. The sufficient conditions for asymptotic stability of the solutions of non-autonomous systems 
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1. Consider the following system of differential equations 

ks = f~(X), s = l  ..... n (I.I) 

In addition to system (1.1) we will also consider the perturbed system 

k 

k s = f s ( X ) +  Y. bsj(t)hsj(X), s = l  ..... n (1.2) 
j=l 

The functions f~(X) and hs](X) are defined and continuously differentiable for all X • /~ ,  and the 
functions b#(t) are continuous and bounded for t ~ 0. 

We will assume thai: systems (1.1) and (1.2) have a zero solution X = 0, and that the zero solution 
of  (1.1) is asymptotically stable. We will investigate the conditions for which the zero solution of  the 
perturbed system is also asymptotically stable. 

We know [1-3], that ilL(X) are homogeneous functions, perturbations will not disturb the asymptotic 
stability of  the zero solution when their order is higher than the order of the right-hand sides of  system 
(1.1). 

It was assumed in [411 thatf~(X) and hsj(X) are homogeneous functions of  order Ix and o, respectively, 
while the integrals 

t 

Isj(t) = I bsj(x)dx (1.3) 
o 

are bounded when t e [0, +o.]. It was shown that for this type of perturbations asymptotic stability can 
also be preserved when ~ ~< It. 

In this paper we consider the case when fs(X) and hsj(X) are generalized homogeneous functions, 
while the integrals (1.3), generally speaking, are not bounded when t I> 0. 

2. Suppose the function g(X) is specified and continuous for all X e R n. 

Definition 5. The function g(X) is called a generalized homogeneous function of the class ( m  1 . . . . .  

ran) of order m ff 

[ m l 
Xl  . . . . .  . . . . .  , , . ) ,  

where m, ml . . . .  m n are positive rational numbers with odd denominators. 
We will assume that J~(X) and hsl(X) are generalized homogeneous ftmetions of the class (ml . . . . .  ran) 

of order ms + It andros + a respecfwely, where It and a are positive rational numbers with odd denominator~ 
We know [5] that it follows from the asymptotic stability of the zero solution of system (1.1) that 

positive-definite generalized homogeneous functions V(X) and W(X) of the class (ml  . . . . .  mn) of order 
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m and m + Ix exist, for which the following equation holds 

s--t ~-~-x~ f ' (x)  = - w ( x )  

where the function V(X) is continuously differentiable. Using these functions we can establish that when 
> ~t the zero solution of system (1.2) is asymptotically stable. 
Suppose the function V(X) is twice continuously differentiable. For this to be so it is sufficient for 

the function fs(X) to be twice continuously differentiable [5]. 
We will also assume that the integrals (1.3), generally speaking, are not bounded when t ~> 0. However, 

a number a, 0 ~< tx ~< 1 exists such that 

lim l ls j( t)=O 
t - -~+~ t ot 

Theorem. When the inequality 

26 ~> (o~ + l)~t (2.1) 

is satisfied the zero solution of system (1.2) is asymptotically stable. 

Proof. Consider the function 

v~ = v ( x ) -  
s = l  

OV f isj(t)hsj(X) 
OXs j=1 

By virtue of system (1.2) its derivative has the form 

dVt = - W ( X ) - ~  E lsj(t)r~=t ~ ~ h s j  fr(X) + E bri(t)hri(X) 
dt sfl jr1 = Oxr [,3xs )[. i=l 

Suppose 

z ( x )  = E xs , ~ ( t ) =  E (t) 
s=l s=l j=l 

For all X ~ R" and t I> 0 we have the inequalities 

a~Z m - a3q)(t)Z m+° ~ V I (t,X) ~< a2 zm + a3q~(t)Z m+a 

dVi ~< _qZm+. + tp(t)(c2 zm+~+° + c3L ] 
dt 

where az, a2, a3, cl, c2, c3 are positive constants [5]. 
We will choose the numbers 8, T, A and T so that the following conditions are satisfied 

3ma 2 > ktCly, BclAa~l TM > m(3a2) I+l~lm 

2a35A ° ~  < at, 4 c 2 ~  all~ < el, 4c3~)A 2°lp-I < c! 

{p(t)<at Q when t~>T 

Consider the solution X(t) = X(t, X0, to) of system (1.2), the initial data of which satisfy the conditions 
Z~t(Xo) < y/to, to >>- T. 

For all t ~> to the following inequality holds 

Z~(X(t)) < AIt (2.2) 

In fact, if an instant of time t 1 > to exists such that Z~(X( t0 )  = A/tl, and condition (2.2) is satisfied for t e [to, h) ,  
then for t e [to, h] we have 
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alzrn (X(t)) ~< V 1 (t,X(t)) ~ 3a2 z m (x(t)) 
2 2 
av~ (t,X(t)) <~ _ c---l ZM+~(X(t))- - - -  

dt 2 

Using the method of estimates [5] we arrive at the inequality 

1] 
3ma2 a ~ a l  ) J~'0~,3ma2 ~-) 

It follows from the conditions for choosing the numbers T,A and T that the left-hand side of this inequality is positive 
while the right-hand side is negative. We obtain a contradiction. 

Using the proved property of  the solutions of  system (1.2) and also their continuous dependence on the 
initial data, we obtain tJhat the zero solution of system (1.2) is asymptotically stable. This proves the theorem. 

Corollary 1. If the integrals (1.3) are bounded for t ~ 0, then when the inequality 

2 o > ~ t  

is satisfied the zero solution of system (1.2) is asymptotically stable. 

Corollary 2. Supposef~(X) and hsj(X) are homogeneous functions of order ~t + 1 and o + 1, respectively. 
Then, when inequality (2.1) is satisfied the zero solution of system (1.2) is asymptotically stable. 

Hence, we obtain that for this form of perturbations the asymptotic stability of the zero solution of 
system (1.2) can also be preserved when o ~< Ix. 

3. We will consider so~aae examples of the use of the above theorem. 

Example 1. Suppose the motion of a mechanical system is described by the equations 

De ~w (3.1) 
q =-'~'q + ~)il 

Here q is an n-dimensional vector of the generalized coordinates, the function P(q) corresponds to the potential 
energy of the system and is a twice continuously differentiable positive-definite homogeneous function of order 
3~, ~, > 2, and W(q) is a twice continuously differentiable negative-definite homogeneous function of order IX, 
IX > 2. Hence, system (3.1) is dissipative and the equilibrium position q = q = 0 is asymptotically stable [6]. 

We will assume that IX < 3 while ~ = 2/(3 - Ix). Then, the system considered is a generalized homogeneous system, 
and the generalized homogeneous Lyapunov function can be chosen in the form 

+P(q) /  +c~.  " (~P~[~ ~,(21-1) V=(I~IT~ i /l s~lqsL~qs), ~ = 2 2 L - 2  

where l is a natural number and c is a positive constant. 
For sufficiently small c the function Vis positive definite, and its derivative, calculated by virtue of system (3.1), 

is a negative-definite function. 
We will also assume that the functions (OP/iiCls) ~ are twice continuously differentiable, at least for fairly high 

values of 13. 
We will now consider the perturbed system 

~P 8W _ 
ii = - ~ q  + - ~ -  + 111 (t)H(di) + B 2 (t)R(q) (3.2) 

where the elements of the vectors H(q) and R(q) of dimensionality k and m are continuously differentiable 
homogeneous functions c,f order v and o respectively, v < 1, o > 1, and Bl(t) and Be(t) are n x k and n x m matrices, 
continuous and bounded for t ~ 0, and a number a, 0 ~< a <~ 1 exists such that 

lim4i Bj(x)dx = O, j = l , 2  
t--~+~ t 0 
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Using the above theorem, we obtain the sufficient conditions for asymptotic stability of the position of equilibrium 
q ffi q -- 0 of system (3.2) 

2v ~> ot(l.t- 2) + I.t, 2o ~> (ot(ltt- 2) + I1) / ( 3 -  I.t) 

Examp/e 2. Consider the Lienard vector equation 

X" ~F - ~G _ 
(3.3) 

Here X is an n-dimensional vector of the unknown functions, and the components of the vector F(X) and the scalar 
function G(X) are twice continuo.usly differentiable homogeneous functions of order la and 21a respectively, la > 2. 

Making the replacement Y ffi X + F(X) in Eq. (3.3), we obtain the generalized homogeneous system 

X = Y - F ( X ) ,  Y =  ~G 
~X 

We will assume that the functions G(X) and F r ~G/~X are positive definite. Then, the zero solution of this system 
is asymptotically stable, while the twice continuously differentiable generalized homogeneous Lyapunov function 
can be expressed in the form 

V= Y r y + G ( X )  +c ~, x sy  s 
$ffil 

where c is a negative constant. 
If  the number c is sufficiently small in absolute value, the function constructed satisfies the conditions of 

Lyapunov's theorem on asymptotic stability. 
In addition to Eq. (3.3) we will consider the perturbed equation 

(3.4) 

We will assume that the elements of the k x n matrix H(X) and the components of  the m-dimensional vector 
R(X), and also the n x k and n x m matrices Bl(t) and B2(t) possess the properties indicated in Example 1. 

The conditions for asymptotic stability of the zero solution of Eq. (3.4) then have the form 

2v ~ (or + l)(I.t- 1), 2o ~ 21.t + (or + l)(l.t- 1) (3.5) 

Notes .  1. In some cases the results obtained in this paper can be extended by using a somewhat modified method 
for constructing the Lyapunov functions (see [7]). 

For examples, applying this method to Eq. (3.4) we obtain new conditions for asymptotic stability of the zero 
solution 

2 v ~ ( a + l ) ( l l - l ) ,  o>~l.t+ot(i.t-l), v+o~>l , t+(a+l) ( ix- l )  

which refine conditions (3.5). 
2. For some types of non-linear systems the proposed method of investigating the stability of the equilibrium position 

can also be used when the right-hand sides of the unperturbed equations are not generalized homogeneous functions. 

Examp/e 3. Consider a solid rotating around a fixed point O, situated at its centre of inertia. We will assume that 
the axes Oxyz, which are the principal central axes of this body, are connected with the body. The equations of 
rotational motion of  the body acted upon by a controlling moment M have the form 

Ocb+co x Oco = M (3.6) 

where co is the angular velocity vector and O is the inertia tensor of the body [8]. 
Suppose two unit vectors r and s are specified; the vector s will be assumed to be fixed in absolute space while 

the vector r is fixed in the solid. The vector s then rotates with respect to the system Oxyz with angular velocity 
--co. Consequently 

s = - 0 , × s  (3.7) 

We will construct the controlling moment M for which the system of equations (3.6) and (3.7) has an asymptotically 
stable position of equilibrium s = r, co = 0. 
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We know [8], that the moment M can be chosen in the form 

M =  ~_~W_ d G s x r  
~03 d(p 

where W(03) is a negative~lefmite functions of the components of the vector co and G((p) is a positive-definite function 
of the quantity (p = II s -. r112/2. 

We will assume that W(03) is a twice continuously differentiable homogeneous function of  order ~t, tt > 2; 
G(9) = a¢o TM, where a > 0, ~. I> 1. 

Suppose X ffi s x r, Y = (xl ~, x2 ~, x3a) T, where 13 is a rational number with odd numerator and denominator, 
a~>l. 

Consider the function 

V = 103TO03 + G0p) + C03TOy (3.8) 

where c is a positive constant. 
If  I~ ~> max{1 + ( t t -  2)(X + 1), (2X + 1) /0 t -  1)}, and the number c is sufficiently small, the function Vis positive 

definite, and its derivative, calculated by virtue of Eqs (3.6) and (3.7), is a negative-definite function. 
Using this function it can be shown that to solve Eqs (3.6) and (3.7), beginning at t = 0 in a fairly small 

neighbourhood of  the equilibrium position s = r, 03 = 0, for all t t> 0, we have the inequalities 

I103(oli ~< A(t + I) -0-+I)18, [[s(t)- r] ~< A(t + I) -I/6 

HereA > 0, 8 -- max{(~t - 2)(X + 1), J3 - 1}. 
Suppose that the body considered is acted upon, in addition to the controlling moment, by the moment of external 

perturbing forces M1, having the form 

M l = B(t)H(03) 

where the components of the k-dimensional vector H(03) are continuously differentiable homogeneous functions 
of  order v, v > 1 and B(0 is a 3 x k matrix, continuous and bounded for t ~> 0. 

Differentiating the Lyapunov function (3.8) by virtue of the perturbed system we obtain the sufficient condition 
for asymptotic stability of the equilibrium position investigated 

v > tt - 1 (3.9) 

We will further assume that a number a, 0 ~< (x ~ 1 exists such that 

t 

lim 1.~_] B(~)d~--0 
t--~+eo t - -  O' 

Condition (3.9) can then be refined by using the method proposed in this paper for investigating the stability of 
the solutions of non-autonomous systems. 

We will choose the Lyapunov function for the perturbed system in the form 

t 
V z = V-(03+Y)T~ B(~)dzH(03) 

0 

Using this function we obtain that, when the following inequalities are satisfied 

(3.10) 

the equilibrium position s = r, 03 = 0 of the perturbed system is asymptotically stable. 

Note. For systems with generalized homogeneous fight-hand sides, condition (2.1) for all a e [0, 1] refines the 
well-known condition for the asymptotic stability of the zero solution o > ~t. In the example considered, inequality 
(3.10) extends the set of values of  the parameter v, defined by condition (3.9), only in the case when the following 
inequalities are satisfied 

a(~.-  2)(~.+ I) ~< ~., a(2~.+ 2 -  gt) ~< ( i t -  I)(i~- 2)(~.+ I) 
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